import sympy
from sympy import Symbol, Matrix, *
t = Symbol('t') #t should be \tau, please keep in mind
T = Matrix(([0, t, 0], [t, 0, 0], [0, 0, 0]))
R = Matrix(([a, -a, 0],[a, a, 0], [0, 0, 1]))
T1
\begin{bmatrix}
1.0t & 0 & 0\\
0 & -1.0t & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
E = Symbol('E')
v = Symbol('v') # v should be \upsilon
V = 1.0/E * Matrix(([1, -v, -v],[-v, 1, -v],[-v, -v, 1]))
V
\begin{bmatrix}
\frac{1}{E} & -\frac{\upsilon}{E} & -\frac{\upsilon}{E} \\
-\frac{\upsilon}{E} & \frac{1}{E} & -\frac{\upsilon}{E} \\
-\frac{\upsilon}{E} & -\frac{\upsilon}{E} & \frac{1}{E} \\
\end{bmatrix}
E1 = V * T1
V * T1 * Matrix([1, 1, 0]) #This was written on the Lecture 11-Extend
The complete function should be:
(\varepsilon_\zeta, \varepsilon_\eta, \varepsilon_z) ^T = \frac{1}{E} \cdot V \cdot (\tau, -\tau, 0) ^T
where V is the matrix before.
The result is the following vector:
\begin{pmatrix}
\varepsilon_\zeta \\
\varepsilon_\eta \\
\varepsilon_z\\
\end{pmatrix} = \begin{pmatrix}
\frac{\upsilon \tau + \tau}{E} \\
-\frac{\upsilon \tau + \tau}{E} \\
0 \\
\end{pmatrix}